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Abstract

In this paper we present a comparison of different schemes
for transform coding of  reflectance spectra. Aiming for
representing the spectra with a small number of coefficients,
we first concentrate on schemes using orthonormal sets of
basis vectors. In this case the basis vector sets used for
analysis and synthesis of the spectra are identical. Regard-
ing the mean squared spectral error, the optimal basis func-
tion set for a given set of test spectra can be calculated
analytically.

We then allow the vector bases for analysis and syn-
thesis to be different and give an example for creating ap-
propriate sets. We show that the best vector set strongly
depends on the error measure that is to be minimized. It is
not efficient to replace the error in a visually uniform color
space by the mean squared spectral error. Minimizing these
two error measures yields different sets of vectors as they
can not be minimized simultaneously. Furthermore we show
the superiority of the approach using separate analysis and
synthesis vector sets over orthonormal basis vector sets.

In order to verify the results of the analytically derived
vector sets, we compare them with those of vector sets de-
rived by optimization algorithms.

1. Introduction

The notation is chosen in accordance with the work of
Trussell.1 We sample a spectrum equally spaced over the
visible range and form a column vector f with n elements.
The color matching functions, which are linear combina-
tions of the sensitivity characteristics of the three different
cone types of the human eye, form an n × 3 matrix A = ( a1;
a2; a3). By multiplication we get the color impression as a
3-vector c = ATf = (X; Y; Z)T.

The physical spectrum f = Dr depends on the reflec-
tance spectrum r of the object and the spectrum D of the
illumination, where D is an n × n diagonal matrix with the
spectrum on the diagonal. For the color vector we have
c = ATDr = Ad

Tr,  using the abbreviation Ad = DA.
Now the reflectance spectra r are approximated by the

weighted sum of synthesis functions r ≈
i=0
m−1∑  wisi = Fsw.

The synthesis vectors si are represented in the columns of
the n × m matrix Fs. The weighting coefficients form the
m-vector w.

These weighting coefficients are calculated as scalar
products of the reflectance spectrum r and the analysis vec-
tors t i

T  which are represented in the rows of the analysis m
× n matrix Fa. We have

       w = Far, r ≈ r̂ = Fsw = FsFar  (1)

Analysis and synthesis vector sets Fa and Fs are to be
constructed such, that an error measure is minimized. Fa

and Fs have to meet the following two conditions:

1. The repeated application of analysis and synthesis must
not change the vector r. Therefore P = FsFa has to be a
projection: (FsFa)2 = FsFa.

2. It immediately follows the orthonormality condition
in form of FaFs = I, the m × m identity matrix.

We seek for analysis and synthesis vector sets that lead
to a minimal error for a test set of reflectance spectra. We
consider two error measures:

1. The mean spectral error is defined by

E
1

n
(r − r̂)T ⋅(r − r̂)



 . (2)

2. The mean color error is evaluated in a visually uni-
form color space taking a set of different illuminants
D into account. We use the modified Euclidean dis-
tance of the two colors to be compared in the CIELab
color space as proposed in the ∆E94

*  formula.2

In the following two sections we propose analytical
derivations of orthogonal basis vector sets as well as analy-
sis-synthesis vector sets. Afterwards we employ optimiza-
tion algorithms to be able to verify the results.

2. Orthogonal Systems

In this case we claim the analysis and synthesis vector sets
to be identical, Fs = FT

a = F. From the two above conditions
it follows that F needs to be an orthonormal basis.

For minimizing the mean squared spectral error we
know the analytical solution in form of the Karhunen-
Loe’ve transform (KLT). The transform vectors are the
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eigen vectors according to the k largest eigen values of the
autocorrelation matrix of the test spectra set under consid-
eration. To be comparable to transform schemes that do
not subtract the mean spectrum prior to the transform, we
take the eigen vectors of the autocorrelation matrix instead
those of the autocovariance matrix.

3. Analysis-Synthesis Systems

With a large number of given test spectra and a given set of
test illuminants we can analytically derive transform sys-
tems that minimize the mean squared error regarding the
color values. This approach, which is based on a singular
value decomposition of the matrix of color values, was in-
troduced as the one-mode analysis. 3

Therefore we have to choose a color space for the mini-
mization. The L*a*b* space is obviously more uniform to
the visual perception of color differences than the XYZ
space, but it is derived by a nonlinear transform. We can
only seek the best linear approximation of this transform a
given set of spectra.

After collecting the p test reflectance spectra r in an n
× p matrix R, we get the 3 × p matrix of color values C =
ATR. Given the nonlinear transform L(c) = e we obtain the
color vector e = (L*a*b*)T. Applying this transform to the
whole matrix of spectra yields L (C) = E, again a 3 × p
matrix. We approximate  E ≈ Ê  = TC using the 3 × 3
matrix T. The minimal error in Ê  is achieved T = ECT

(CCT)–1. Then the transform from a reflectance spectrum
into the resulting color space is given e = TATr.

Combining the n × 3 matrix ATT of the color matching
functions of the resulting color space with the predefined
set of l test illuminants Dd = 0...l–1 we build the n × 3l matrix
of the weighted color matching functions A* = (D0ATT,
D1ATT,...,Dl–1ATT).

The 3l × p matrix G = A*
TR  gives us all the color val-

ues that we wish to reproduce with minimal error using the
approximated spectra.

G ≈ Ĝ = A*
TR̂ = A*

TFsFaR (3)

Applying the singular value decomposition we get the
expression G = USVT. Let the set of test spectra be suffi-
ciently large: p > 3l. Then the decomposition yields the
orthogonal 3l × 3l matrix U, the diagonal 3l × 3l matrix S,
and the orthogonal p × 3l matrix V. The elements si on the
diagonal of S (which are the eigen values of G) are sorted
in decreasing order si > si + 1. Replacing the smallest eigen
values sk, sk + 1,...s3l–1 with zero value leads to an approxi-
mation for G in a least mean square sense:

G ≈ Ĝ = USkVT = A*
TFsFaR (4)

Solving USk = A*
TFs  for Fs and VT = FaR for Fa yields

the analysis and synthesis functions that we need. It can be
easily shown that replacing all but the first k eigen values
of S with zeros is equivalent to taking only the first k rows
of Fa and the first k columns of Fs. In other words, we code
the spectra with the first k coefficients of the transform.

The rows of the 3l × p matrix VT span a subspace of
the space formed by the rows of the n × p matrix R. There-
fore there exists a solution of VT = FaR,which is unique
and given by

Fa = VTRT(RRT)–1.  (5)

Herewith we have already defined the analysis vec-
tors for the transform coding kernel.

On the other hand, equation USk = A*
TFs  consists of 3l

× 3l single equations to solve the 3l × n variables of Fs.
Since usually 3l < n, it is underdeterminate. Therefore we
can employ further constraints to the solution. Here we try
to minimize both the aforementioned error for criteria. At
first we concentrated on the construction of vectors to mini-
mize the color error. Now we can determine the synthesis
vectors such, that also the spectral error is reduced. For
natural spectra, which are relatively smooth, we obtain the
best approximation if we use “smooth” synthesis vectors.
In order to achieve these vectors we again employ a Wiener
inverse expression under the assumption of an AR(1) model
for the spectra together with a correlation by coefficient 0
< ρ < 1. For such a statistical model we can calculate the
covariance matrix K. This matrix is square (n × n) and of
Toeplitz structure with ρ|k| on the k-th secondary diagonal.
Amongst all possible solutions the Wiener inverse yields
the one that has minimal deviation from the assumed model.

Fs = KA* (A*
TKA* )-1 US  (6)

4. Systems Derived by Optimization

For minimizing the mean visual color error over a set of
different illuminants there is no analytical solution. There-
fore what we have calculated so far is suboptimal in a vi-
sual color error sense because we only minimized the mean
squared spectral error and the mean squared color error in
a color space which is close to a visually uniform color
space. For comparison we calculated the mean ∆E94

*  error
by means of optimization algorithms. We applied a combi-
nation of stochastic optimization to find a good starting
point followed by a gradient scheme.

Because the analytically derived vectors offer the pos-
sibility to be used in a hierarchical way we also optimized
the vector sets, such that they can be used hierarchically.
Let (mean ∆E94

* ) be the mean visual color error averaged
over a set of illuminants and over a set of test spectra using
only i coefficients of the transform. Then for a set of I vec-
tors we would like to minimize all ∆E94

*
;i for i = 1 . . . I

simultaneously. This can be accomplished by taking their
product

total error = mean
i=1

I

∏ ∆E94,i
*

(7)

as the measure to be minimized. It was observed that the
single error values ∆E94,i

*  were not much worse than the
error values that remain after minimizing the ∆E94,i

*  indi-
vidually. That means by minimizing the above error mea-
sure we gain the benefit of hierarchical usage with almost
no loss of reconstruction quality. The small degradation of
quality can be due to the difficulty in finding the global
optimum in this high dimensional problem.

We started the optimization with the analytically de-
rived vectors. First we performed a stochastic optimization
using the Threshold Accepting algorithm4 and took the re-
sult as the initial point for a gradient scheme which is re-
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ferred to as the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm in Ref. 5.

To comply the two conditions given in Section 1 we
need additional steps in the optimization.

At first we add a step to each iteration of the optimiza-
tion that performs an orthonormalization of the basis vec-
tors, respectively an orthonormalization of the analysis
vectors to the synthesis vectors.

In the case of the analysis-synthesis system it is pos-
sible to substitute the synthesis vectors Fs by smoother vec-
tors Fs,smooth, provided that they yield the same projection
onto the space spanned by matrix A*. Like we did in Sec-
tion 3 we incorporate the desired smoothness by modeling
the spectra with an AR(1) model with a predefined correla-
tion coefficient  ρ and a corresponding covariance matrix K.
The smooth versions of the synthesis vectors are given by

        Fs,smooth = KA* (A*
TKA* )-1 A*

TFs . (8)

Both synthesis vector sets lead to the same color error,
while with the smoother vectors Fs,smooth at the same time
the mean squared spectral error is decreased.

To include the smoothing into the optimization we
perform this projection of the synthesis vectors in each it-
eration of the optimization followed by the aforementioned
orthonormalization of the analysis set to the synthesis set.
It was observed that the optimization algorithmworks very
well with this supplement, that means the results in terms
of the color error are not affected whereas the spectral er-
ror is decreased significantly.

5. Results

The following figures were obtained using a set of 1269
reflectance spectra of Munsell chips, sampled between 400
and 700 nm in 5 nm intervals.6 Our set of illuminants con-
sisted of the standard illuminants A, C, D65, Xe, and F11.
We compare the following transforms:

1. Orthogonal transform, minimizing the mean squared
spectral error, KLT.

2. Orthogonal transform, minimizing Eq. (7), derived
using the above given optimization.

3. Analysis-synthesis vector set, according to Section 3,
spectra AR(1) modeled with ρ  = 0.99.

4. Analysis-synthesis vector set, minimizing Eq. (7), de-
rived using the above given optimization, synthesis
vectors AR(1) modeled with ρ = 0.99.

Figures 1 and 2 show the first 5 basis vectors for both
the orthogonal transforms. Figures 3 and 4 show the first 5
analysis and synthesis vectors which were analytically de-
rived as given in Section 3. Figures 5 and 6 show the first 5
analysis and synthesis vectors which were derived using
the optimization.

The error evaluation is divided into the mean squared
spectral error (Table 1) and the mean ∆E94,i

*  color error
(Table 2) for a number of i = 1 . . . 7 coefficients. Because
of the stochastic optimization different optimization runs
render results which are not identical. Although the results
are only slightly differing it should be noted that they are

only exemplary as well for the error values as for the shape
of the vectors.

Concerning both the orthogonal transforms (transforms
1. and 2.) it can be stated that the mean squared spectral
error (minimized by the KLT) and the mean ∆E94,i

*  error
(minimized with the optimized basis vectors) are contrary
to each other. Minimizing the color error is by no means
equivalent to minimizing the spectral error.

Table 1. Mean squared spectral error [×1000]

transform

i     1.     2.     3.     4.

1 9.0701 26.2012 9.9268 10.3316

2 2.8990 21.6506 4.4168   5.0851

3 0.5618 19.7249 0.8736   1.0106

4 0.2648 19.3786 0.6987   0.8237

5 0.1229 19.1538 0.3788   0.4409

6 0.0779 19.1458 0.1860   0.2391

7 0.0425 19.1400 0.1575   0.2070

Table 2. Mean ∆E94,i
* error

transform

i     1.     2.     3.     4.

1 16.5787 16.4859 16.1975 16.1081

2 10.8818 10.3858   9.6435   9.4431

3   1.6416   0.8544   0.5304   0.4261

4   1.2552   0.4119   0.2709   0.2335

5   0.5801   0.1691   0.1266   0.1024

6   0.5302   0.0903   0.0570   0.0500

7   0.1967   0.0429   0.0181   0.0169

Using the proposed scheme for obtaining separate vec-
tor sets for analysis and synthesis (transform 3.), the color
error can be further reduced. This is accompanied by only
a moderate increase of the spectral  error compared to the
KLT. As far as the mean a ∆E94,i

*  color error is concerned,
we observe that with only three coefficients we get the same
accuracy as with six coefficients using the KLT.

Generally the analysis-synthesis transforms perform
better than the orthogonal transforms. Even the analytically
derived analysis-synthesis vectors (transform 3.) yield
smaller color errors throughout than the best achievable
orthogonal basis vectors (transform 2.).

We have developed a scheme to analytically derive
analysis-synthesis transform vectors for coding reflectance
spectra, which out perform the best possible orthogonal
transform in terms of mean color error, and which nearly
reach the error values of the best achievable analysis-syn-
thesis vectors that can be derived by optimization.
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Figure 1. KLT basis vectors.

Figure 2. Basis vectors minimizing Eq. (7).

Figure 3. Analysis vectors according to Section 3.

Figure 4. Synthesis vectors according to Section 3.

Figure 5. Optimized analysis vectors minimizing Eq. (7).

Figure 6. Optimized synthesis vectors minimizing Eq. (7).


